-6061- (ALUMINIO - MAGNESIO - SILICIO)

COMPOSICIÓN QUÍMICA

%	Si	Fe	Cu	Mn Mg		Cr	Zn Ti		Otros elementos	Al
Mínimo	0,40		0,15		0,80	0,04			Otros Total	
Máximo	0,80	0,70	0,40	0,15	1,20	0,35	0,25	0,15	0,05 0,15	El resto

PROPIEDADES MECÁNICAS TÍPICAS (a temperatura ambiente de 20°C

	Características	a la tracción				
Estado	Carga de rotura Rm. N/mm2	Límite elástico Rp 0,2, N/mm²		Límite a la fatiga N/mm²	Resistencia a la cizalladura Ţ N/mm²	Dureza Brinell (HB)
0	125	55	27	120	85	30
T4	235	140	21	180	150	65
T6	310	270	14	190	190	95

PROPIEDADES FÍSICAS TÍPICAS (a temperatura ambiente de 20°C)

Módulo elástico N/mm²	Peso específico g/cm³	Intervalo de fusión ºC	Coeficiente de dilatación lineal 1/10 ⁶ K	Conductividad	Resistividad eléctrica a 20°C - μΩ cm	Conductividad electrica % IACS	Potencial de disolución V
70,000	2,70	580-650	23,3	T4-155	T4-4,3	T4-40	-0,83
				T6-166	T6-4,0	T6-43	

APTITUDES TECNOLÓGICAS

SOLDADURA A la llama

Al arco bajo gas argón Por resistencia eléctrica Braseado

MECANIZACIÓN

Fracmentación de la viruta Brillo de superficie

Estado: T6

COMPORTAMIENTO NATURAL

En ambiente rural En ambiente industrial En ambiente marino En agua de mar

ANODIZADO De protección

Anodizado duro

Decorativo

EMBUTICIÓN

Por expansión Embutición profunda

Lacado

Galvanizado

Níquel químico

Estado: T6

RECUBRIMIENTO

Muy buena. Buena. Regular. Mala, evitar.

RADIOS DE PLEGADO

Estado	0,4 <e<0,8 mm,<="" th=""><th>0,8<e<1,6 mm<="" th=""><th>1,6<e<3,2 mm,<="" th=""><th>3,2<e<4,8 mm,<="" th=""><th>4,8<e<6 mm,<="" th=""><th>6<e<10 mm,<="" th=""><th>10<e<12 mm,<="" th=""></e<12></th></e<10></th></e<6></th></e<4,8></th></e<3,2></th></e<1,6></th></e<0,8>	0,8 <e<1,6 mm<="" th=""><th>1,6<e<3,2 mm,<="" th=""><th>3,2<e<4,8 mm,<="" th=""><th>4,8<e<6 mm,<="" th=""><th>6<e<10 mm,<="" th=""><th>10<e<12 mm,<="" th=""></e<12></th></e<10></th></e<6></th></e<4,8></th></e<3,2></th></e<1,6>	1,6 <e<3,2 mm,<="" th=""><th>3,2<e<4,8 mm,<="" th=""><th>4,8<e<6 mm,<="" th=""><th>6<e<10 mm,<="" th=""><th>10<e<12 mm,<="" th=""></e<12></th></e<10></th></e<6></th></e<4,8></th></e<3,2>	3,2 <e<4,8 mm,<="" th=""><th>4,8<e<6 mm,<="" th=""><th>6<e<10 mm,<="" th=""><th>10<e<12 mm,<="" th=""></e<12></th></e<10></th></e<6></th></e<4,8>	4,8 <e<6 mm,<="" th=""><th>6<e<10 mm,<="" th=""><th>10<e<12 mm,<="" th=""></e<12></th></e<10></th></e<6>	6 <e<10 mm,<="" th=""><th>10<e<12 mm,<="" th=""></e<12></th></e<10>	10 <e<12 mm,<="" th=""></e<12>				
0	0	0,5	1	1	1	1,5	2				
T4	0,5	1	1,5	2,5	3	3,5	4				
T6	1,5 2,5		3,5	3,5	4	4,5	5				
Multiplicar el coeficiente por el espesor (e) de la chapa											

-6061- (ALUMINIO - MAGNESIO - SILICIO)

CARACTERÍSTICAS MECÁNICAS DE LA ALEACIÓN A DIFERENTES TEMPERATURAS

Estado	-195°C		-80°C			-30°C			+25°C			+100°C			
	Rm	Rp 0,2	A 5,65	Rm	Rp 0,2	A 5,65	Rm	Rp 0,2	A 5,65	Rm	Rp 0,2	A 5,65	Rm	Rp 0,2	A 5,65
T6	415	325	22	340	290	18	325	285	18	310	275	17	290	260	18

Estado	Estado +150°C		;	+205°C			+260°C			+315°C			+370°C		
	Rm	Rp 0,2	A 5,65	Rm	Rp 0,2	A 5,65	Rm	Rp 0,2	A 5,65	Rm	Rp 0,2	A 5,65	Rm	Rp 0,2	A 5,65
T6	235	215	20	130	105	28	50	34	60	32	19	85	21	12	95

Rm N/mm²; Rp N/mm²; A 5,65 % Según normas A.A.

TRATAMIENTOS DEL ALUMINIO

Estado	Tratamiento de puesta en solución TªC	Medio de temple	Tratamientos de maduración artificial. Mantenimiento a T ^a en horas	Maduración natural.	
T4	530°C± 5 °C	Agua a 40°C máx.		4 días mínimo	
T6	530°C± 5 °C		(**) 8 horas a 175°± 5°C ó 6 horas a 185°± 5°C		

(**) Este tratamiento da mejores características mecánicas y alargamiento.

Intervalo de temperatura de forja: 350º - 500ºC

Recocido total: 420°C, con enfriamiento lento hasta 250°C

Recocido contra acritud: 340°C

 $1 \text{ kg / mm}^2 = 9.81 \text{ N/mm}^2$; $1 \text{N/mm}^2 = 1 \text{MPa}$

APLICACIONES

Se aplica en la industria para la fabricación de moldes, troqueles, maquinaria, herramientas, vehículos, ultraligeros, vagones de ferrocarril, industria naval, piezas de bicicletas, muebles, oleoductos, estructuras de camiones, construcciones navales, puentes, usos civiles y militares, calderería, torres y postes, construcción de calderas, motoras, aplicaciones aeroespaciales, cobertura de rotores de helicópteros, remaches, etc.

OBSERVACIONES

Es una aleación desarrollada para cubrir en características mecánicas el campo entre la 6063 y las aleaciones del grupo AlCu y AlZn. El tiempo entre el temple y la maduración artificial no debe superar las 2 horas. Esta aleación que endurece por tratamiento térmico, tiene una buena aptitud a la soldadura pero pierde casi un 30% de la carga de rotura en la zona soldada.